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GRIFFITHS’ INFINITESIMAL INVARIANT
AND THE ABEL-JACOBI MAP

MARK L. GREEN

0. Introduction

In recent years, a body of theorems has accumulated about the locus of
smooth surfaces of degree d in P2 possessing curves which are not complete
intersections of the given surface with another surface. Let us call this the
Noether-Lefschetz locus. The classical theorem of Noether and Lefschetz states
that this locus has positive codimension when d > 4. A simple infinitesimal
proof of this theorem is now known [2], every component is known to have
codimension at least d — 3 [5], and for d > 5, the only component having this
codimension is the variety of surfaces containing a line ([4], [9]). There are
still some fascinating open problems about this locus (see (8]).

For smooth hypersurfaces X in P™ in higher dimensions the situation is
very different. If we look at codimension-one subvarieties on X, then the Lef-
schetz theorems show immediately that the Noether-Lefschetz locus is empty
in all degrees. If we look at higher codimension subvarieties of X, then the
question becomes quite interesting. C. Voisin has recently shown that a gen-
eral 3-fold in P4 always possesses curves which cannot be obtained by inter-
secting X with a surface. There is, however, a beautiful conjecture of Griffiths
and Harris [8] which is not contradicted by Voisin’s example: On a general
3-fold X of degree d > 6, the Abel-Jacobi map from algebraic 1-cycles on X
homologically equivalent to zero to the intermediate Jacobian J2(X) is zero.

This conjecture is still open. In this paper, we will lay out a three step
program for proving it, and do the first two steps. This yields the following
partial result:

Theorem 0.1. For a general 3-fold of degree > 6, the image of the Abel-
Jacobi map on algebraic 1-cycles homologically equivalent to zero has image
contained in the torsion points of the intermediate Jacobian.

Here is a sketch of the argument: Let 2° — B be a family of smooth
(2m + 1)-folds with 2 smooth and 7 everywhere of maximal rank. Let
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Xt = 7['_1(t). Let
F¥m+l c p?m c ... C FO = g¥™+1(X,,C)

be the Hodge bundles on B. The bundle ,#™*! of intermediate Jacobians is
given by , :

Jm+1(Xt) — A\FO/Fm+1,
where A = H?™+1(X,,Z) is the integral lattice. For our purposes, a nor-
mal function for 2 will be analytic section v of #™*! which satisfies the
tnfinitesimal condition for normal functions—let U be any local lifting of v to
an analytic section of F°. We then require that

o0/dt; € F™

for all ¢, where ¢1,%q,--- ,tn are local coordinates on B. It will not be neces-
sary to include in our definition of normal function the behavior of v at points
of the (compactified) base space where the (2m+-1)-folds become singular (see
[13]). If Z is a codimension m+ 1 analytic cycle of 2 such that Z, = Z NX,
is homologically equivalent to zero in X;, then by the Abel-Jacobi map we
obtain an analytically varying element vz (t) € J™*1(X;) which satisfies the
infinitesimal condition for normal functions (see [13]).

The family that will interest us the most is the universal family of smooth
(2m + 1)-folds of degree d. For this, let By C PCO™ET-1 be the parameter
space of smooth (2m + 1)-folds of degree d in P*™+2, and 2; — By the
canonical family of (2m + 1)-folds defined by

Z; = {(F,z) € By x P*™*+2|F(2) = 0}.

We will say that a normal function v is locally constant if near every point
of B there is a local lifting & of v to F© which is constant. Following [8], we
will say that a normal function v is algebraically defined over B if there is a
generically finite surjective analytic map B — B and v is a normal function
for the pullback of the family &2 to B. With these linguistic conventions, the
first step of the proof is:

Theorem 0.2. Let 2 — By be the universal family of (2m+ 1)-folds of
degree d, where m > 1. If ¥ is a subvariety of By and v s an algebraically
defined normal function for the induced family on T, then v is locally constant
provided codimE < m(d — 2) — 4.

The proof of this theorem, which occupies §1, is based on an improvement of
a beautiful infinitesimal tnvariant of normal functions introduced by Griffiths
[6], together with a vanishing theorem for Koszul cohomology from [5].

The next step, carried out in §2, is a fairly simple monodromy argument,
which shows that if we let 25 — By be the universal family of (2m + 1)-folds
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of degree d, then a locally constant algebraically defined normal function on
B, must be the projection of a torsion element of A\H*™*1(X,, C). This
yields the following result, which was conjectured by Griffiths and Harris [8):

Theorem 0.3. Let 23 — By be the universal family of (2m + 1)-folds
of degree d, where m > 1. Then any algebraically defined normal function on
By is torsion provided d > 2 + 4/m.

Let us now assume that the general (2m + 1)-fold X of degree d > 2+4/m
has nonzero Abel-Jacobi map

codimension m + 1 algebraic cycles
on X homologous to zero

} — JmH(X),

There is then a smooth variety §d and a generically finite dominant map E,é, 2
By and a codimension (m + 1) algebraic cycle .Z” of the pullback family 25 of
Z to §d with Z; = .Z N X; homologous to zero, having nonzero associated
normal function vz . Indeed, the values v (f) taken over all { € p~1(t) and all
B, and all Z constructed in this way give the image of the Abel-Jacobi map
for X; for t general. However, by the previous theorem these algebraically
determined normal functions are all torsion. We thus have:

Theorem 0.4. For a general (2m + 1)-fold X of degree d > 2 + 4/m in
P2™+2 | the image of the Abel-Jacobi map

{ codimension m + 1 algebraic cycles} s LX)
on X homologous to zero
i3 contained in the torsion points of J™11(X).

In §3, we will discuss some open problems and conjectures, as well as other
loose ends left by the ideas in this paper.

Many of these results have been obtained independently by Claire Voisin,
whose work will appear separately [10]. Because of my familiarity with the
results of [5], I was able to go further in some directions, while because of her
greater geometric insight into many parts of the problem, she was able to go
further in others.

I am grateful to Dayid Cox for pointing out a glitch in my original definition
of the invariants é,v, to Chad Shoen and Steve Zucker for educating me about
algebraic cycles, to Joe Harris and Janos Kollar for some useful discussions
on monodromy, and to Phillip Griffiths for his help and encouragement.

1. Generalization of Griffiths’ infinitesimal invariant
of normal functions
Let 22 5 B be an analytic family of smooth (2m+1)-folds, m > 1, with 2
and B smooth and 7 a submersion. Since all our considerations in this section
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will be local, we may take B to be the unit ball in C¥. Let T = Tp(B) and let
t1,t2, -+ ,tn be local coordinates for B at 0. Let F2m+1 g2m ... g0 e

the sheaves of analytic sections of the Hodge bundles F2m+! F2m ... FO,
Differentiation
TRFO - F0
is given by 5
af
atk O Gt

The Griffiths infinitesimal period relations state that differentiation takes Fr
to F =1 for every p, so that we have a map

TRFP - Fr 1,

By standard multilinear algebra, this gives rise to a Koszul complex

2
g1 oo L AT 057,

where
N
_ af
= Zdtk ® =,
af
Bldte ® f) = f\—‘: dte Adti ® 22

Let v be a normal function for the family 2 — B, and let & be a lifting
of v to FO. Consider
N
dp =Y 00/dtx @ dtx € T* ® F™.
k=1
The fact that we land in F™ is due to the infinitesimal relation for normal
functions. Let ¥ be another lifting of v. Then & = & + f, where f is an
analytic section of F™+!, Now dir = di + df and we may interpret df as the
image of f under the differentiation map F™*! — T* ® $™. So we obtain
from v a well-defined element

bve(T"®F™)/imF ™
This sits in one of the Koszul complexes just constructed:
2
gm+1 th ®‘7m _@,AT*@?”‘“I'

Equality of mixed partials d2J = 0 translates into saying that G(6v) = 0. We
have therefore an invariant év € ker §/ im ¢.
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The invariant v vanishes if and only if there is some lifting o of v for
which di = 0, i.e. for which D is constant. We thus have:

év=0 1ifandonlyif v islocally constant.

Using the identifications H*?m+1—k = Fk/Fk+1_ Jifferentiation induces
maps of bundles
T® Hk,2‘m+l—k — Hk—1,2m+2—~k

for every k > 1. Using these maps, it is possible to construct a series of
complexes A, given by

2
gmtem-p+l _, ® Hmtp—lm—p+2 _, AT* ®Hm+p—2,m—-p+3,

where A is the term on the left, A] is the term in the middle, and A2 is the
term on the right. The convention here is that a Hodge group is taken to be
zero if one of its bidegrees is negative. Let & be the complex (cf. [14])

2
ym+l_’T*®ym_’/\T~®?m—l

indexed the same way. Thus v € H!(&"). We can filter & " so that the pth
step of the filtration is the complex

2
Frir LT @F il o, AT @ g2
There is then a spectral sequence EP+? such that
EP9= HP*9(A,) and EBS = GrP(HPH(«)).

The grading on H!(% ") may be interpreted as follows: we obtain from év
a sequence of inductively defined invariants 6é,v,6sv, -+ ,6myov, where
bpv € EB"P and é,v can be defined only if the preceding invariants
81v,69v,- -+ ,bp_1v are all zero. Furthermore, 6 = 0 if and only if 6, = 0,
bov =0, -+ , 642 = 0. Thus we have:

Theorem 1.1. A normal function v s locally constant if and only if the
infinitestimal invariants 61v,65v,- - - , 62V are all zero.

Notice that

B — E;° = H'(4)),

and therefore the first of our infinitesimal invariants 6, v lies in the cohomology
at the middle term of the Koszul complex

_ 2
gmtlm E’ ™ ®Hm,m+1 ﬁ’ AT* ®Hm—1,m+2.
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This latter space is the dual of the cohomology at the middle term of the
complex

2
/\T® Hm+2,m—1 -T® Hm+1,m N Hm,'m+1‘

In this form, one may identify é6;~ as the original infinitesimal invariant of
Griffiths [6], the one change being that he did not set things up in a Koszul-
theoretic formulation.

The remaining dpv are new invariants, and realize Griffiths’ beautiful idea
that there ought to exist a nice infinitesimal criterion for a normal function
to be locally constant. At least in the local case, I think that this theorem
is the only possible answer. To my knowledge, these are the first differential-
geometric invariants that live in a Koszul group; I suspect that this does not
reflect a lack of such invariants, but rather the fact that Koszul groups are
unfamiliar to differential geometers.

The groups EZ:'~? where the infinitesimal invariants live are admittedly
somewhat daunting. However, we note immediately that:

A normal function v is locally constant provided that HI(A;,) =0
for 1 < p < m+2.

We now consider the case of the universal family 27 — By of (2m + 1)-
folds of degree d defined in the introduction. Let ¥ be a subvariety of By and
¥ > Ta generically finite dominant map. Consider the induced family on
Y. Let0e X correspond to a smooth (2m + 1)-fold X corresponding to a
homogeneous polynomial F' of degree d. Let T = To(fl). Then T is a linear
subspace of H?(@p2m+2(d)) containing the degree d part J4(F) of the Jacobi
ideal of F. In particular, T is base-point free. The dual of H* (Ap) is the
cohomology at the middle term of the Koszul complex

2
/\T ® Hm—p+3m+p—2 _, 7 o gm-p+2m+tp—1 _, pm—p+limip

Using the standard identifications via Poincaré residue or the methods of [3],
that is equivalent to the cohomology at the middle term of the Koszul complex

2
AT®R(m+p—2)d+d—2m—3 N T®R(’m+p—1)d+d—2m—3 N R(m+p)d+d—2m—3,

where
R* = HY(@pam+2(k)) /I (F).

An easy diagram chase shows that this will vanish if two conditions hold:
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(1) The cohomology at the middle term of the Koszul complex

2
/\ T® V(m+p—2)d+d—2‘m—3 ST® V(m+p—l)d+d—2‘m—3

_, y(m+p)d+d—2m-3

is zero. Here V¥ = HY(@pam+2(k)).
(2) The multiplication map

T ® Jimip-1)d+d—2m-3(F) = Jmip)a+d—2m—3(F)
is surjective.
Of course, (2) would be implied by the potentially stronger statement:
" (2') The multiplication map
T® V(m+p——1)d—2m—2 N V(‘m+p)d—2m—2

is surjective.
Fortunately, the vanishing theorem of [5] states that (1) holds provided

codimT < (m+p—1)d —2m — 4
and (2’) holds provided
codimT < (m+p—1)d —2m — 2.
We will therefore have (1) and (2) for all p > 1 provided
codimT < m(d —2) — 4.

We thus see that any normal function on & has vanishing infinitesimal invari-
ants and hence is locally constant. We therefore have proved:

Theorem 1.2. Let 25 — By be the universal family of (2m + 1)-folds of
degree d, and let . be a subvariety of By. Then for m > 1, any algebrazcally
determined normal function for the restriction of 25 to % must be locally
constant, provided codimX < m(d —2) — 4.

2. Locally constant algebraically determined normal functions
for the universal family of smooth (2m + 1)-folds of degree d

Let 27 — By be the universal family of smooth (2m + 1)-folds of degree
d. Pick a base point 0 € By corresponding to a smooth (2m + 1)-fold X.
As we move toward a point of the boundary of By representing a (2m + 1)-
fold acquiring a node, there is a wvanishing cycle v € H*™1(X,Z) so that
the monodromy as we loop around this point is given by the Picard-Lefschetz
transformation
v v+ (v )y
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for all v € H?™+1(X,C). Let Za# C H?™+1(X,Z) be the subgroup
spanned by the vanishing cycles. It is known [1] that Z&#" has finite in-
dex in H?™+1(X, Z).

Let B — By be a generically finite dominant map of varieties, and let
Z — B be the pullback family from 25 — B;. Assume that v is a locally
constant nofllr/nal function for & — B. Finally, let B be the universal cover
of E, and 2 — B the pullback family. On this family, we may lift v to a
locally constant element & of the pullback of F© which is now unambiguously
identified with H?™+1(X,C). Then there is an open cover {U,} for B so
that & is the constant vector v, on U,. On a nonempty overlap U, NUpg, the
constant vector v, — vg belongs to F™*1. Unless v, — vg vanishes, it gives a
nonzero fixed element v,g of F™*+1. Such a vector would be in the kernel of
the derivative map

Fmtl _reFm™,

These maps are filtered by the maps

Hp,2m+1—'p T ®Hp—1,2m+2—p’

where p is in the range m + 1 < p < 2m + 1. These maps, in the notation of
§1, are just the maps

R(2m+1—p)d+d—2m—3 N (Vd)* ® R(2m+2—p)d+d—2m—-3

which are known to be injective by Macaulay’s Theorem. Thus v = vg3.
Descending to the family 27 — ﬁ, we obtain a vector v € H*™*1(X, C)
satisfying the property

p(v) —veEA=H"™ (X Z)

for all p belonging to the monodromy group I' of the family. There is a positive
integer N depending on the generic degree of the map B — Bj so that for
every vanishing cycle v € Z&#", the transformation

v v+ N )y

belongs to T'. For the v Jjust constructed, we have that N(v-~)y € A for all
vy € ZHNV . Since ZWA has finite index in A, we see that for some positive
integer M depending on this index, NM(v-A)A € A for all A € A. By Poincaré
duality, this implies v € A/(NM). Equivalently, NM - v = 0 and thus v is
torsion. This proves: '

Theorem 2.1. FEuvery algebraically determined normal function on the
universal family of (2m + 1)-folds of degree d is torsion when d > 2 +4/m
and m > 1.
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For m = 1, this result was conjectured by Griffiths and Harris [8]. It has
as an immediate consequence the following theorem.

Theorem 2.2. The image of the Abel-Jacobi map for a general (2m+1)-
fold of degree d in P2™+2 {s contained in the torsion points of the intermediate
Jacobian whend > 2+ 4/m and m > 1.

3. Open problems and further remarks

The most critical open problem suggested by this paper is:

Problem 3.1. Show that for a general (2m + 1)-fold X of degree d >
2+4/m in P?™+2 m > 1, the image of the Abel-Jacobi map of X is torsion
free.

The local differential of §1 can be rephrased in a more general context than
what we needed here. The results really are about maps

t S1(t) € S2(t) S+ € Sn(t)

to flag manifolds which satisfy the infinitesimal relation dS; C S;41 together
with sections of one of the quotient bundles @Q; satisfying another infinitesimal
relation. One natural situation to consider is the osculating flag of a subvariety
of affine or projective space. Here, the Koszul groups where the invariants
opv lie involve the linear systems II, IIi,--- introduced in this context by
Griffiths and Harris [7], the higher fundamental forms. There should be some
interesting local differential geometry in this situation.

There are also some interesting differential systems lurking in §1. The
condition do € T* ® F P becomes an interesting looking differential system
when written out.

Although we were able to show that any algebraically determined normal
function on a subvariety ¥ of low codimension of By must be locally constant,
we were unable to show in this case that it must be torsion. Our monodromy
argument breaks down—as Joe Harris pointed out to us, it is a frequently
encountered problem in doing such arguments that the closure of £ may meet
the locus of singular hypersurfaces in an unfortunate way, e.g. always acquiring
multiple nodes or worse singularities. Still, it is reasonable to pose:

Problem 3.2. On a subvariety of suffictently low codimension of By,
must every algebraically determined locally constant normal function be tor-
ston?

A quite interesting phenomenon is to look at normal functions v on a 2p-
fold Y for hypersurfaces X; belonging to a linear system |L|, where L is taken
to be a sufficiently ample line bundle, i.e., the first Chern class of L is taken
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extremely large. In this case, one can show that the Koszul group to which
61v belongs is isomorphic to HEP(Y'). It is natural to conjecture that:

Problem 3.3. For an abstract normal function in the situation above,
i.e., an element of the 2p-th Deligne cohomology group of Y, the invariant
61v 1s obtained from the natural map HEP(Y,Z) — HEP(Y).

This has been shown by C. Voisin [11] in the case of a normal function
arising from a codimension p analytic cycle. A solution to this problem would
nicely complement the work of X. Wu {12] on nondegeneracy of normal func-
tions. ,

Finally, a few comments about sharpness of our bounds on degree. For the
case of 3-folds (m = 1), the locus of 3-folds of degree d containing a line has
codimension d — 5. These give rise to an algebraically defined normal function
on this locus which is not locally constant. This shows that our main results
are sharp for m = 1. The bound d > 2 + 4/m may be rewritten d > 6 for
m=1,d>4form=2,3;d> 3 for m > 4. For d smaller than these bounds,
we readily check that every (2m + 1)-fold of degree d contains a P™. For
m = 2,3 one would thus expect this bound to be sharp. For m > 4, since
the intermediate Jacobian is zero for d < 2, we see that the result extends to
these lower degrees for trivial reasons. The bound codimX¥ < (d~2)m —4 is
unlikely to be sharp for m > 1, although as we just saw, it is sharp for m = 1
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